ECHOCARDIOGRAPHIE DOPPLER

Tel: 06 46 83 15 92 camilleodin@gmail.com

Dr Camille ODIN

Vétérinaire Consultant Échographie Abdominale et Cardiaque/Doppler

N°Ordinal: 24738

<u>Date</u>: 31/10/17 <u>**Propriétaire**</u>: Mme Baron

<u>Vétérinaire traitant:</u> Dr. Nenard <u>Animal:</u> Lutine, européen, FS, 2,5

ans, 3,6kg

ANAMNESE

□ Souffle 2/6 asymptomatique de découverte récente

TBEG

MESURES

Paramètres	Valeurs (mm)	Paramètres	Valeurs (mm)
VDd	2,3	SIVd en 2D	3,5 mm
SIVd	3	AD/AG	normal
VGd	11,2	Ao/Tp	normal
PPVGd	3,2	E-SIV	normal
SIVs	3,5	Doppler pulmonaire Vmax =	1,8 m/s dans la CCVD
VGs	6,3	Doppler aortique Vmax=	1,2 m/s
PPVGs	3,8		
FR	44 %	E mitral	1,1 m/s
AG/Ao	9,8/9=1,1	FC	200 bpm

DESCRIPTION

- Les coupes Temps-Mouvement transventriculaire et transmitrale obtenues par voie parasternale droite montrent :
 - Un ventricule gauche de morphologie et de cinétique normales,
 - Un inotropisme ventriculaire gauche normal,
 - Un ventricule droit normal.
- L'examen de l'atrium gauche et de la valve mitrale révèle :
 - Un atrium gauche de taille normale,
 - Des feuillets mitraux normaux,
 - Des cordages associés normaux,
 - □ L'absence de fuite mitrale.
- La coupe 2D transaortique obtenue par voie parasternale droite permettant de dérouler le tronc pulmonaire permet de mettre en évidence :
 - Un tronc pulmonaire de taille normale,
 - Une valve pulmonaire d'aspect normale,
 - Un flux d'éjection du ventricule droit turbulent dans la chambre de chasse, sans anomalie anatomique, avec une forme en lame de sabre en doppler continu,
 - □ Une valve aortique composée de trois cuspides, d'aspect normal.

- La coupe 2D 4 et 5 cavités obtenue par voie parasternale droite met en évidence :
 - Un atrium droit de taille normale,
 - Une absence de communication inter atriale ou interventriculaire.
- La coupe 2D 5 cavités obtenue par voie parasternale gauche montre :
 - Un flux aortique laminaire de vélocité normale,
 - □ Un doppler trans-mitral et trans-tricuspidien normal.
- Absence d'épanchement pericardique ou pleural.

CONCLUSION

Turbulences situées dans la chambre de chasse du ventricule droit (sténose dynamique), bénignes, sans conséquences cardiaques, responsables du souffle ausculté.

Absence d'autre anomalie cardiaque échographiquement visible ce jour.

Pas de traitement ni suivi nécessaire.

Absence de contre-indication cardiaque majeure à la réalisation d'une anesthésie générale.

Confraternellement,

Dr Camille Odin

Dr Odin Camille` Vétérinaire (n° 24738) camilleodin@gmail.com

Images disponibles sur demande e-mail adressée à camilleodin@gmail.com

Site: veterinaires-consultants.fr

Dr M.Hélène LASSERON

Echographie abdominale Echographie cardiaque Médecine interne et cardiologie **Dr Camille ODIN**Echographie abdominale
Echographie cardiaque

<u>camilleodin@gmail.com</u>

mhlasseron@yahoo.fr